60 research outputs found

    Nuclear trafficking of secreted factors and cell-surface receptors: new pathways to regulate cell proliferation and differentiation, and involvement in cancers

    Get PDF
    Secreted factors and cell surface receptors can be internalized by endocytosis and translocated to the cytoplasm. Instead of being recycled or proteolysed, they sometimes translocate to the nucleus. Nuclear import generally involves a nuclear localization signal contained either in the secreted factor or its transmembrane receptor, that is recognized by the importins machinery. In the nucleus, these molecules regulate transcription of specific target genes by direct binding to transcription factors or general coregulators. In addition to the transcription regulation, nuclear secreted proteins and receptors seem to be involved in other important processes for cell life and cellular integrity such as DNA replication, DNA repair and RNA metabolism. Nuclear secreted proteins and transmembrane receptors now appear to induce new signaling pathways to regulate cell proliferation and differentiation. Their nuclear localization is often transient, appearing only during certain phases of the cell cycle. Nuclear secreted and transmembrane molecules regulate the proliferation and differentiation of a large panel of cell types during embryogenesis and adulthood and are also potentially involved in wound healing. Secreted factors such as CCN proteins, EGF, FGFs and their receptors are often detected in the nucleus of cancer cells. Nuclear localization of these molecules has been correlated with tumor progression and poor prognosis for patient survival. Nuclear growth factors and receptors may be responsible for resistance to radiotherapy

    A structural approach to the role of CCN (CYR61/CTGF/NOV) proteins in tumourigenesis

    Get PDF
    The CCN (CYR61 [Cystein-rich61]/CTGF [connective tissue growth factor]/NOV [Nephroblastoma overexpressed]) proteins constitute a family of regulatory factors involved in many aspects of cell proliferation and differentiation. An increasing body of evidence indicates that abnormal expression of the CCN proteins is associated to tumourgenesis. The multimodular architecture of the CCN proteins, and the production of truncated isoforms in tumours, raise interesting questions regarding the participation of each individual module to the various biological properties of these proteins. In this article, we review the current data regarding the involvement of CCN proteins in tumourigenesis. We also attempt to provide structural basis for the stimulatory and inhibitory functions of the full length and truncated CCN proteins that are expressed in various tumour tissues

    Food Allergen Analysis: Detection, Quantification and Validation by Mass Spectrometry

    Get PDF
    Worldwide, food-allergy-related diseases are a significant health problem. While the food industry works on managing cross-contaminations and while clinicians deal with treatment, laboratories must develop efficient analytical methods to ensure detection of hidden allergens that can cause severe adverse reactions. Over the past few years, huge progress has been made in mass spectrometry for the analysis of allergens in incurred and processed foodstuffs, especially as regards sample preparation and enrichment (solid phase extraction, protein precipitation and ultrafiltration). These achievements make it possible to meet the Allergen Bureau\u27s Voluntary Incidental Trace Allergen Labelling (VITAL) sensitivity criteria. The present chapter details the different steps in the development of mass spectrometry methods, from peptide selection to the validation of qualitative and quantitative methods. The chapter focuses mainly on studies performed with incurred and processed food samples to ensure the applicability of the methods to allergen detection in real food products

    CCN3 and calcium signaling

    Get PDF
    The CCN family of genes consists presently of six members in human (CCN1-6) also known as Cyr61 (Cystein rich 61), CTGF (Connective Tissue Growth Factor), NOV (Nephroblastoma Overexpressed gene), WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins). Results obtained over the past decade have indicated that CCN proteins are matricellular proteins, which are involved in the regulation of various cellular functions, such as proliferation, differentiation, survival, adhesion and migration. The CCN proteins have recently emerged as regulatory factors involved in both internal and external cell signaling. CCN3 was reported to physically interact with fibulin-1C, integrins, Notch and S100A4. Considering that, the conformation and biological activity of these proteins are dependent upon calcium binding, we hypothesized that CCN3 might be involved in signaling pathways mediated by calcium ions. In this article, we review the data showing that CCN3 regulates the levels of intracellular calcium and discuss potential models that may account for the biological effects of CCN3

    CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1

    Get PDF
    Melanocytes reside within the basal layer of the human epidermis, where they attach to the basement membrane and replicate at a rate proportionate to that of keratinocytes, maintaining a lifelong stable ratio. In this study, we report that coculturing melanocytes with keratinocytes up-regulated CCN3, a matricellular protein that we subsequently found to be critical for the spatial localization of melanocytes to the basement membrane. CCN3 knockdown cells were dissociated either upward to the suprabasal layers of the epidermis or downward into the dermis. The overexpression of CCN3 increased adhesion to collagen type IV, the major component of the basement membrane. As the receptor responsible for CCN3-mediated melanocyte localization, we identified discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase that acts as a collagen IV adhesion receptor. DDR1 knockdown decreased melanocyte adhesion to collagen IV and shifted melanocyte localization in a manner similar to CCN3 knockdown. These results demonstrate an intricate and necessary communication between keratinocytes and melanocytes in maintaining normal epidermal homeostasis

    DYRK1A, a Novel Determinant of the Methionine-Homocysteine Cycle in Different Mouse Models Overexpressing this Down-Syndrome-Associated Kinase

    Get PDF
    BACKGROUND:Hyperhomocysteinemia, characterized by increased plasma homocysteine level, is associated with an increased risk of atherosclerosis. On the contrary, patients with Down syndrome appear to be protected from the development of atherosclerosis. We previously found a deleterious effect of hyperhomocysteinemia on expression of DYRK1A, a Down-syndrome-associated kinase. As increased expression of DYRK1A and low plasma homocysteine level have been associated with Down syndrome, we aimed to analyze the effect of its over-expression on homocysteine metabolism in mice. METHODOLOGY/PRINCIPAL FINDINGS:Effects of DYRK1A over-expression were examined by biochemical analysis of methionine metabolites, real-time quantitative reverse-transcription polymerase chain reaction, and enzyme activities. We found that over-expression of Dyrk1a increased the hepatic NAD(P)H:quinone oxidoreductase and S-adenosylhomocysteine hydrolase activities, concomitant with decreased level of plasma homocysteine in three mice models overexpressing Dyrk1a. Moreover, these effects were abolished by treatment with harmine, the most potent and specific inhibitor of Dyrk1a. The increased NAD(P)H:quinone oxidoreductase and S-adenosylhomocysteine hydrolase activities were also found in lymphoblastoid cell lines from patients with Down syndrome. CONCLUSIONS/SIGNIFICANCE:Our results might give clues to understand the protective effect of Down syndrome against vascular defect through a decrease of homocysteine level by DYRK1A over-expression. They reveal a link between the Dyrk1a signaling pathway and the homocysteine cycle

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    Milieux innovateurs et développement durable : des mésologies complémentaires ?

    No full text
    • …
    corecore